
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Winter 2018

1 Instructor: Daniel Llamocca

Solutions - Midterm Exam
(February 15th @ 5:30 pm)

Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (20 PTS)

a) Complete the following table. The decimal numbers are unsigned: (5 pts.)

Decimal BCD Binary Reflective Gray Code

51 01010001 110011 101010

98 10011000 1100010 1010011

576 010101110110 1001000000 1101100000

b) Complete the following table. Use the fewest number of bits in each case: (12 pts.)

REPRESENTATION

Decimal Sign-and-magnitude 1's complement 2's complement

-38 1100110 1011001 1011010

0 00 11111 0

-32 1100000 1011111 100000

69 01000101 01000101 01000101

-64 11000000 10111111 1000000

-24 111000 100111 101000

c) Convert the following decimal numbers to their 2’s complement representations. (3 pts.)

 -16.3125

+16.3125 = 010000.0101

 -16.3125 = 101111.1011

 18.375

+18.375 = 010010.011

PROBLEM 2 (11 PTS)
 The figure below depicts the entire memory space of a microprocessor. Each memory address occupies one byte. 1KB = 210

bytes, 1MB = 220 bytes, 1GB = 230 bytes
 What is the size (in bytes, KB, or MB) of the memory space? What is the address bus size of the microprocessor? (2 pts.)

Address space: 0x000000 to 0xFFFFFF. To represent all these addresses, we require 24 bits. So, the address bus size

of the microprocessor is 24 bits. The size of the memory space is 224 = 16 MB.

 If we have a memory chip of 2 MB, how many bits do we require to address those 2 MB of memory? (1 pt.)

2 MB = 221 bytes. Thus, we require 21 bits to address the memory device.

 We want to connect the 2 MB memory chip to the microprocessor. For optimal implementation, we must place those 2
MB in an address range where every single address shares some MSBs. Provide a list of all the possible address ranges
that the 2 MB chip can occupy. You can only use the non-occupied portions of the memory space as shown below.

 0x200000 to 0x3FFFFF  0x400000 to 0x5FFFFF

 0x800000 to 0x9FFFFF  0xA00000 to 0xBFFFFF

8 bits

0
x
4
0
0
0
0
0

0
x
5
F
F
F
F
F

...

0
x
F
F
F
F
F
F

0
x
0
0
0
0
0
0

0
x
1
F
F
F
F
F

0
x
6
0
0
0
0
0

0
x
7
F
F
F
F
F

0
x
C
0
0
0
0
0

...

0
x
2
0
0
0
0
0

0
x
3
F
F
F
F
F

...

0
x
8
0
0
0
0
0

0
x
9
F
F
F
F
F

...

0
x
A
0
0
0
0
0

0
x
B
F
F
F
F
F

...

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Winter 2018

2 Instructor: Daniel Llamocca

PROBLEM 3 (10 PTS)
 Given two 4-bit signed (2’s complement) numbers 𝐴, 𝐵, sketch the circuit that computes (𝐴 − 𝐵) × 3. You can only adder

units (or full adders if you prefer) and logic gates. Make sure your circuit avoids overflow.

(𝐴 − 𝐵) × 3 = (𝐴 − 𝐵) × 2 + (𝐴 − 𝐵)
Worst case: 15 × 3 = 45. 45 requires 7 bits, thus, we need to sign extend the operand (𝐴 − 𝐵) × 2 on the last addition.

PROBLEM 4 (17 PTS)
a) Perform the following additions and subtractions of the following unsigned integers. Use the fewest number of bits 𝑛 to

represent both operators. Indicate every carry (or borrow) from c0 to cn (or b0 to bn). For the addition, determine whether
there is an overflow. For the subtraction, determine whether we need to keep borrowing from a higher byte. (6 pts.)

 29 - 51  41 + 37

b) Perform the following operations, where numbers are represented in 2's complement. Indicate every carry from c0 to cn. For

each case, use the fewest number of bits to represent the summands and the result so that overflow is avoided. (8 pts.)
 62 – 79  -53 – 26

FA

a0 b0

c0

r0

FA

a1 b1

c1

r1

FA

a2 b2

c2

r2

c3 1
FA

a3 b3

r3

c4
FA

a3 b3

r4

c5

0

0FA
c0

FA
c2c3

FA
c4

FA
c5

s3 s2 s1 s0

FA
c6

s4

FA
c7

s5

r0r1r2r3r4r4

FA
c8

s6

r4r4

41 = 0x29 = 1 0 1 0 0 1 +

37 = 0x25 = 1 0 0 1 0 1

1 0 0 1 1 1 0Overflow!

c 6
=1

c 5
=0

c 4
=0

c 3
=0

c 2
=0

c 1
=1

c 0
=0

29 = 0x1D = 0 1 1 1 0 1 -

51 = 0x33 = 1 1 0 0 1 1

1 0 1 0 1 0

b
6=
1

b
5=
0

b
4=
0

b
3=
0

b
2=
1

b
1=
0

b
0=
0

Borrow out!

62 = 0 0 1 1 1 1 1 0 +

-79 = 1 0 1 1 0 0 0 1

-17 = 1 1 1 0 1 1 1 1

c 8
=0

c 7
=0

c 6
=1

c 5
=1

c 4
=0

c 3
=0

c 2
=0

c 1
=0

c 0
=0

c8c7=0

No Overflow

n = 8 bits

-62 + 79 = -17  [-27, 27-1]  no overflow

-53 = 1 0 0 1 0 1 1 +

-26 = 1 1 0 0 1 1 0

0 1 1 0 0 0 1

c 7
=1

c 6
=0

c 5
=0

c 4
=1

c 3
=1

c 2
=1

c 1
=0

c 0
=0

c7c6=1

Overflow!

n = 7 bits

-53 -26 = -79  [-26, 26-1]  overflow!

To avoid overflow: n = 8 bits (sign-extension)

c8c7=0

No Overflow

-53 -26 = -79  [-27, 27-1]  no overflow

c 8
=1

c 7
=1

c 6
=0

c 5
=0

c 4
=1

c 3
=1

c 2
=1

c 1
=0

c 0
=0

-53 = 1 1 0 0 1 0 1 1 +

-26 = 1 1 1 0 0 1 1 0

1 0 1 1 0 0 0 1

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Winter 2018

3 Instructor: Daniel Llamocca

c) Get the multiplication result of the following numbers that are represented in 2’s complement arithmetic with 4 bits. (3 pts.)
 -5 x 7

PROBLEM 5 (10 PTS)
 Given the following circuit, complete the timing diagram (signals 𝐷𝑂 and 𝐷𝐴𝑇𝐴).

The LUT 4-to-4 implements the following function: 𝑂𝐿𝑈𝑇 = ⌈𝑠𝑞𝑟𝑡(𝐼𝐿𝑈𝑇)⌉. For example: 𝐼𝐿𝑈𝑇 = 1100 → 𝑂𝐿𝑈𝑇 = 0100

Input data to LUT is treated
as an unsigned number.

PROBLEM 6 (17 PTS)
 Sketch the circuit that implements the following Boolean function: 𝑓 = 𝑎𝑏𝑐𝑑

Recall that 𝑎𝑏𝑐𝑑 = (𝑎𝑏)(𝑐𝑑)
 Using ONLY an 8-to-1 MUX and ‘NOT’ gates. (3 pts.)

 Implement the previous circuit using ONLY 2-to-1 MUXs (AND, OR, NOT, XOR gates are not allowed). (14 pts.)

𝑓(𝑎, 𝑏, 𝑐, 𝑑) = 𝑎̅𝑓(0, 𝑏, 𝑐, 𝑑) + 𝑎𝑓(1, 𝑏, 𝑐, 𝑑) = 𝑎̅(𝑏(𝑐𝑑)) + 𝑎 (𝑏̅(𝑐𝑑)) = 𝑎̅𝑔(𝑏, 𝑐, 𝑑) + 𝑎ℎ(𝑏, 𝑐, 𝑑)

𝑔(𝑏, 𝑐, 𝑑) = 𝑏̅𝑔(0, 𝑐, 𝑑) + 𝑏𝑓(1, 𝑐, 𝑑) = 𝑏̅(𝑐𝑑) + 𝑏(𝑐𝑑̅̅ ̅̅ ̅̅)

ℎ(𝑏, 𝑐, 𝑑) = 𝑏̅ℎ(0, 𝑐, 𝑑) + 𝑏ℎ(1, 𝑐, 𝑑) = 𝑏̅(𝑐𝑑̅̅ ̅̅ ̅̅) + 𝑏(𝑐𝑑)

𝑡(𝑐, 𝑑) = 𝑐𝑑 = 𝑐̅𝑡(0, 𝑑) + 𝑐𝑡(1, 𝑑) = 𝑐̅(𝑑) + 𝑐(𝑑̅)
𝑢(𝑐, 𝑑) = 𝑐𝑑̅̅ ̅̅ ̅̅ = 𝑐̅𝑢(0, 𝑑) + 𝑐𝑢(1, 𝑑) = 𝑐̅(𝑑̅) + 𝑐(𝑑)

Also: 𝑑̅ = 𝑑̅(1) + 𝑑(0)

ceil(sqrt(9))= 3

ceil(sqrt(13))= 4

ceil(sqrt(5)) = 3

ceil(sqrt(3))= 2

1101DATA

OE

1001

DI

DO

0101 0011

OE

DI DATA

DO LUT
4-to-4O

L
U
T

I
L
U
T 44

4 4

0110 1011 0111 1100 1110

1011 0111 1100 1110

0011 0100 0011 0010

1 0 1 1 x

0 1 1 1

0 1 0 1 x

0 1 1 1

0 1 0 1

0 1 0 1

0 1 0 1

0 0 0 0

0 1 0 0 0 1 1

1 0 1 1 1 0 1

0

1
0

1

f

1

0

1

0

0

1

g

h

ab

t

u

c

0

1

d

d

1

0

0
1
2
3
4
5
6
7

a b c d

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

f

0

1

1

0

1

0

0

1

1

0

0

1

0

1

1

0 abc

3

d

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Winter 2018

4 Instructor: Daniel Llamocca

PROBLEM 7 (15 PTS)
 Complete the timing diagram of the following circuit. The VHDL code (tst.vhd) corresponds to the shaded circuit.

𝑑 = 𝑑1𝑑0, 𝑤 = 𝑤1𝑤0, 𝑟 = 𝑟2𝑟1𝑟0, 𝑦 = 𝑦3𝑦2𝑦1𝑦0

library ieee;

use ieee.std_logic_1164.all;

entity tst is

 port (d: in std_logic_vector(1 downto 0);

 r: out std_logic_vector(2 downto 0);

 u: in std_logic);

end tst;

architecture bhv of tst is

begin

 process (d, u)

 begin

 r <= d&’0’;

 if u = ‘1’ then

 r <= ‘1’&d;

 end if;

 end process;

end bhv;

0

DECODER

E

y3

PRIORITY
ENCODER

P3
x1

x0
P2

P1
z

y2

y1

y0P0 P=0000  z=0

w1

w0

s1

3

2

1

s0

r1

r0
tst.vhd

r2

f

u
d1

d0

f

y 0010

r

w 01

101

z

11 00 10 11 10 00 00 11 00 01

111 100 101 111 101 010 100 110 110 110

1000 0001 0100 1000 0100 0000 0001 1000 0001 0010

01 11

P3

d

P2

P1

P0

01 11 10 11

Unknown

10000101 10

